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Abstract—Brain-Machine-Interface (BMI) is a system that
builds artificial pathways between different parts of the neural
system. Due to different application scenarios, a BMI system
may consist of a neural signal acquisition, electrical neural stim-
ulation, signal processing, wireless communication, and power
management. This paper reviews the state-of-art development
in system-on-a-chip BMI design technology from application to
circuit design details. A perspective on the future trend is also
included.

Index Terms—Brain-Machine-Interface, integrated circuit de-
sign, neural signal acquisition, electrical stimulation, closed-loop
BMI

I. INTRODUCTION

A Brain-Machine-Interface (BMI) is a system which estab-
lishes an artificial pathway between the human brain and/or
body and external hardware. By extracting user intent from
the acquired electrophysiological signals, such as slow cortical
potentials, P300 potentials, electromyograph, commands can
be generated using a wearable non-invasive BMI device [1].

Taking advantage of the development of CMOS technology
and nano fabrication, the volume size of BMI has shrank
dramatically in the past two decades, which enables the
operation of various clinical practices that require an invasive
BMI device. An invasive BMI device enables the acquisition
of mu or beta rhythms recorded from the scalp, and/or
cortical neuronal activity recorded by implanted electrodes.
The development of invasive BMI devices bring hope to
patients suffering from brainstem stroke, spinal cord injury
and various neuromuscular disorders, i.e. Parkinson’s disease,
Huntington’s disease, etc. An implanted BMI device enables
a way to rebuild the injured pathway and/or function of the
human body. Pacemaker and cochlear implant were the earliest
prosthesis that have improved the life quality of many people.

In 1999, [2] first reported a real-time control of a robot arm
using neural signal directly acquired from the brain motor
cortex of a trained rat. In the reported experiment, the rat
has trained to obtain water by pressing a level. The concept
of controlling prosthesis using user intent extracted from
neuron activities of the user’s brain becomes realistic [3, 4].
Encouraged by the practices performed on animal objects
[2, 5], medical researchers began the clinical experiments on
human objects. [5–8] implanted electrode arrays in the brain
for the extraction of thought to control a computer cursor.
Several tens of channels of neural signals have been captured
simultaneously for further signal processing. A utilization of a

BMI to control the movement of the object’s arm, as well as to
generate artificial tactile sensing signal to brain was reported
later [9]. In [10], the feeling of touch restored from skin-like
sensors was successfully transferred to human neural system
by using electric stimulations. The implanted BMI enables the
user to “feel” the touch from a prosthetic hand.

In addition to the research and development of BMI based
prosthetics, promising results have been reported recently on
bridging the transected spinal cord using implant BMI devices.
[11, 12] show a recovering of the motor function of the spinal
cord transected rat by applying epidural spinal stimulation.
More recently, a fully implanted, wireless closed-loop BMI
for the cure of spinal cord transected rat was demonstrated
[13].

There is no doubt that BMI provides a promising method
for a better understanding of brain function, as well as for new
therapies for patients suffering from neural diseases. However,
there are challenges lays in front of engineers, such as device
size, power consumption, battery solution, biocompatibility
and biosafety. In the follows, the authors will review the state-
of-art hardware implementation of BMI.

II. HARDWARE IMPLEMENTATION OF BMI

A. System Overview

As illustrated in Fig.1, a typical BMI system consists of
neural signal acquisition module, neural stimulation module,
neural data processing module, data transmission module and
power management module. Multiple channel analog front end
circuits are usually integrated in the neural signal acquisition
module, which usually consists of a low noise amplifier and
programmable gain stage. A multiplexer is utilized for the
timing management of the shared analog-to-digital convertor
(ADC). For the neural stimulation module, a digital-to-analog
convertor (DAC) is shared by all the channels for the pulse
generation. An analog back end is used as the output stage. On-
chip neural data processing, which typically consists of feature
extraction and neural coding, is optional for a closed-loop
operation. For invasive BMI system implementation, wireless
data and power transmission is critical for the optimization of
the device size. Wireless transceiver and power management
modules are therefore widely used in invasive device designs.
ISM band FSK, FM, UWB, and backscattering are commonly
used.

978-1-4673-9719-3/16/$31.00 ©2016 IEEE



Fig. 1. Typical architecture of a BMI system, consisting of 1) neural signal
acquisition module, 2) neural stimulation module, 3) neural data processing
module, 4) data transmission module and 5) power management module. An
on-chip signal processing unit may also be utilized for closed-loop operation.

B. Design of Neural Signal Acquisition Module

The neural signal acquisition module integrates an analog
front-end (AFE) which amplifies the raw neural signal before
digitization. The design challenge of the AFE comes from the
nature of the neural signal. The amplitude of the raw signal
varies from sever micro-volt to milli-volt. Thus, a low noise
amplifier is required. Both capacitor mode amplifier [14–18]
and resistor mode amplifier [19, 20] have been widely used
in AFE design for a BMI. In addition, the neural signal of
the researchers’ interests typically lays in the frequency band
from near DC to kHz range. Chopping is commonly used to
improve the noise performance in the lower frequency band.
Different design methods focusing on the improvement of the
performance has been reported in the literature. [21] proposed
a method to optimize the power and area with the considering
of channel numbers. [22] proposed neural recorder circuit
design working under low voltage supply (0.5V). Table I
compares the performance of some selected work in literature.

In addition, while the resolution of the electrode array is
increasing, on-chip data compression is one of the demanded
functions in BMI systems. Neural recorder integrated linear
slope predict[23], or compressed sensing [24–26], or spike
detection [27] have been reported in literature.

C. Design of Neural Stimulation Module

Different types of electrical stimulation methods, such
as voltage-controlled [32], current-controlled [33–35], and
charges-controlled [36] have been reported in literature. The
voltage-controlled stimulation method features the highest
efficiency, but it is difficult to control the total amount of
the injected charges [37]. The charges-controlled stimulation
limits the total amount of the inject charges by discharging
a series of capacitors, but the capacitors require a large area
and the discharging time cannot be precisely controlled. The
current-controlled stimulation enables a high controllability of
the charge injection, thus is the most widely used method.
However, the power efficiencies in conventional designs are
usually lower than the other methods.

Biosafty is one of the critical issues in electrical neural
stimulation design. The accumulation of carries may cause

tissue destruction. During the procedure of electrical stim-
ulation, there are two types of charge transfer, polarizable
and non-polarizable, occur at the interface between the phys-
iological medium and the electrode [31]. The irreversible
non-polarizable charge transfer will cause damaging chemical
species and dissolve electrodes. Typically, charge balance is
achieved by applying reversed stimulus current as illustrated
in Fig.2. A stimulation procedure that consists two phases with
different current direction is denoted as biphasic stimulation.
However, due to process voltage and temperature variation in
circuit design, the ideal net-zero charge of biphasic stimulation
is seldom realized. [38] proposed to reduce the charge error
by applying feedback control of an adaptive driving voltage,
which enables a constant low operating voltage for the entire
active circuits. In addition, the accumulated charges on the
blocking capacitor was used for further stimulation. An effi-
ciency improvement of 51% is experimentally demonstrated.
[39] proposed an active charge balance method, which enables
a 100% charge compensation in monophasic mode and a 36%
amplitude correction in biphasic mode.

Fig. 2. Operation principle of biphasic stimulation.

D. Design of a Closed-loop BMI

As mentioned earlier, the goal of BMI is to build an artificial
pathway to replace the function of an injured neural pathway.
In order to realize this goal, a closed-loop operation between
the raw acquired neural signal and the neural stimulation is
required [13, 27, 40–45]. Feature extraction, such as action
potential detection and spectral processing, is widely used
for the analysis of the user intent. Neural coding is used to
organize the output pattern of the electrical stimulations. For
example, [40] presents a 4-channel bidirectional BMI which
extracts spectral features from field potentials in the analog
domain. At the system level, a neurostimulator is included for
closed-loop applications. In [41], detected action potentials are
used to trigger stimulation using a 4-channel closed-loop BMI.

In addition to the integration of specified a feature extraction
module, more general closed-loop feedback control methods,
such as programmable proportional-integral-derivative (PID)
controller [42] or proportional-integral (PI) controller [43]
has been used in reported closed-loop BMI chip designs.
Such a general-purpose PID controller calculates the difference
between a preset target value and the extracted neural feature
as an error signal. The extracted neural feature can be action
potential of single neuron, neural spectral feature, energy,
and etc. A weighted sum of the original, the derivative and



TABLE I
COMPARISON WITH BIDIRECTIONAL NEURAL INTERFACE DESIGNS

Reference [15] [28] [29] [30] [43] [23]
CMOS technology 0.8µm 0.5µm 0.5µm 65nm 180nm 0.35µm
ch # of rec./stim. - 64 / - 9 / - 64 / - 4 / 2+8 3 ECG / 4 EEG / 1 DOT

AFE noise 0.98µVrms 8µVrms 4.58µVrms 1.2µVrms 6.3µVrms 1.46µVrms

AFE NEF 4.6 - 2.83 4.76 3.76 3.31
Bandwidth (Hz) 0.05 - 100 <100 - 10k 0.178 - 6.92k ECoG 0.64 - 6k 0.2 - 250

ADC ENOB - - - - 5.6 9.3
Front-end pwr./ch <2µW 225µW 13.98µW 2.3µW 61.25µW 525nW
Feature extraction - Spike - Bandpass Energy detect Linear slope

detection filter PI controller predict
Wireless - OOK TDM-FM - Backscatter -

the integral of the error signal is output from the controller
and further used to modulate an actuator, i.e. configurable
parameters of the stimulator.

III. CONCLUSION

We have witnessed a dramatic development in system
integration of BMI in the last two decades. Nowadays,
the emerging compact, ultra-low power-consumption, invasive
BMI devices are pushing the frontier of medical researches on
brain function as well as clinical practice on various neural
diseases. A BMI with simultaneous processing capability of
tens of channels is relatively mature and available in research
labs. However, electrode and/or electrode arrays with higher
density is greatly required for the recording of neuron action
potentials and/or local field potentials. [46, 47] have reported
high density neural probe designs integrating hundreds of
recording channels, which enables a larger scale neural activity
recording with less damage to the brain tissue. The increasing
resolution places challenges for BMI device design in terms
of power consumption and data transmission.
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